屋子里,徐云正在侃侃而谈:
“艾萨克先生,韩立爵士计算🄏☏发现,二项式定😖🁜🆫理中指数为分数时,可以用e^x🃑🗅🙊=1+x+x^2/2!+x^3/3!+……+x^n/n!+……来计算。”
说着徐云拿起笔,在纸上写下了一行字:
当n=0时,e^x>1。
“艾萨克先生,这里是从x^0开⛴🞫始的,用0作为起点讨论比较方便,您可以🄀理解吧?”
小牛点了点头,示意自己明白。
随后徐云继续写道:
假设当n=k时🂉🌹结论成立,即e^x>🖑👶1+x/1!+x^2/2!🃗🗺+x^3/3!+……+x^k/k!(x>0)
则e^x-[🔬🃯🛕1+x/1!+x^2/2!+x^3/3!+……🜂+x^k/k!]>0
那么当n=k+1时,令函数🄏☏f(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^(k+1)/(k+1)]!(x>0)
接着徐云在f(k+🝼1)上画了个圈,问道:
“艾萨克先生,您对导数有了解么?”
小牛继续点了点头,言简意赅的蹦出两个字🎈:
“了解。”
学过数学的朋友应该都知道。