屋子里,徐云正在侃侃而谈:
“艾萨克先生,韩立爵士计算发现,二项式定理中指数为分数时,可以用e^x=1+x+x📣🜫^2/2!+x^3/3!+……+⛀🗏x^n/💑n!+……来计算。”
说着徐云拿起笔,在纸上写下了一行字:
当n=0时,e^x>1。
“艾萨🌺🄈克🇭先生,这里是从x^0开始的,用0作为起点讨论比🀳较方便,您可以理解吧?”
小牛点了点头,示意自己明白。
随后徐云继续写道:
假设当n=🄶🂂k时结论成立,即e^x>1+x/1!+x^2/2!+x^3/3!+……+x^k/k🍌🆭!(x>0)
则e^x-[1+x📊🙎📊🙎/1!+x^2/2!+x^3/3!+……+x📣🜬^k/k!]>0
那么当n=k+1时,令函数f(k+1)=e^x🄄🞑📞-[1+x/1!+x^2/2!+x^3🏺🟇/3!+……+x^(k+1)/(k+1)]!(x🆍>0)
接着徐云在🄶🂂f(k🌙⛌😽+1)🏉😓上画了个圈,问道:
“艾萨克先生,您对导数有了解么?”
小牛继续🇭点了点🖚头,📊🙎言简意赅的蹦出两个字:
“了解。”
学过数学的朋友应该都知道。